

Evaluation of Arizona's Enhanced I/M Program

presentation to NRC Committee to Review MOBILE Model
March 4, 1999

by

Tom Wenzel

Lawrence Berkeley National Laboratory

Energy Analysis Program

510/486-5753 TPWenzel@lbl.gov http://eande.lbl.gov/EA/teepa/index.html

Using Out-of-Program Data to Evaluate I/M

- Benefits of out-of-program testing
 - —unscheduled testing minimizes "clean for a day" effect (temporary adjustments to pass I/M test)
 - —needed to measure total vehicle emissions (ineligible vehicles)
 - —can identify and measure failed vehicles still driving in I/M area
- Out-of-program test methods
 - -voluntary roadside pullover tests
 - expensive
 - recruitment bias
 - enables visual inspection
 - —remote sensing at controlled driving mode sites
 - relatively inexpensive
 - no bias if no penalty for driving by sensor
 - potential for remotely measuring evaporative HC?

IM240 Data used in Arizona Evaluation

- Centralized, biennial IM240 for MY81 and newer vehicles
- 850,000 vehicles with initial IM240 between January 1996 and June 1997
 - —emissions of vehicles fast-passed or fast-failed extrapolated to full-test equivalents

IM240 Fleet Emission Reductions Compared to MOBILE5 Prediction

MOBILE5*	Vehicles	CO 16.2%	HC 16.9%	NO x 16.7%		
1995 AZ IM240 (random sample)*	7,600	16.2%	14.3%	7.6%		
1996-97 AZ IM240 (all tests)	451,000	14.5%	14.0%	7.1%		
1996-97 AZ IM240 (random sample)	9,000	13.4%	15.1%	7.6%		
Percent of MOBILE5 emission reduction:						
1995 AZ IM240 (random sample)	le)	100%	85%	46%		
1996-97 AZ IM240 (all tests)		90%	83%	43%		
1996-97 AZ IM240 (random samp		83%	89%	46%		

^{*} Analysis of the Arizona IM240 Test Program and Comparison with the TECH5 Model, Glover and Brzezinski, May 1997.

Remote Sensing Data used in Arizona Evaluation

- 4.0 million remote sensing readings of 1.2 million vehicles between January 1996 and August 1997 (originally used for identifying high emitters)
 - —over 100 remote sensing sites
 - —CO and HC emissions only (no NOx)
 - —limitations with Hughes remote sensing data:
 - · emissions measurements
 - vehicle speed/acceleration measurements
 - · inefficient site selection
 - matching measurements to vehicles
- 451,000 vehicles with both IM240 and remote sensing data

Remote Sensing Data Compare Well with IM240 Data (for CO)

- Average CO emissions by MY, as measured by remote sensing and IM240 on the same vehicles, correlate well (r^2=0.99)
- Average HC emissions of MY91+ vehicles do not correlate
 - —IM240 HC emissions too low?
 - due to method to adjust fast pass/fast fail IM240s to full-IM240 equivalent emissions?

(but adjusted average emissions by MY from FP/FF vehicles correlate very well with random 2% sample of full IM240s)

- —or remote sensing HC emissions too high?
 - due to negative HC readings "zeroed out"?
 - due to bias in remote sensing measurement of low HC values?
 (evaluation by RSTi found Hughes sensor biased high for HC and CO)
 - due to poor remote sensing site selection?
 (half of vehicles with speed measurements were decelerating)
- No NOx measurements

Average Remote Sensing and IM240 CO by MY

168,000 vehicles,1996-97 Arizona

Average Remote Sensing and IM240 HC by MY

168,000 vehicles, 1996-97 Arizona

Analyzed 3 Groups of Vehicles, Based on I/M Results

- "Initial Pass"
 - —passed initial I/M test, no second I/M test
- "Final Pass"
 - —failed initial I/M test, passed final I/M test
 - —includes vehicles that passed retest without any repairs
- "Disappearing"
 - —failed initial I/M test, no final passing I/M test
 - —includes vehicles with no second I/M test, and those that failed subsequent I/M test
 - —includes waived vehicles (unidentified; roughly 4% of failed vehicles)

Vehicle and Emission Distributions by I/M Result

		Percent	Percent of Vehicles Studied Pre-I/M Post-I/M		
I/M Result	Vehicles	of All	Vehicles	CO	CO
Initial Pass	373,954	82.9%	90.6%	65%	76%
Final Pass	26,009	5.8%	6.3%	22%	9%
Disappearing	12,880	2.9%	3.1%	14%	15%
Multiple Initial Tests	25,099	5.6%			
Pass Tailpipe, Fail Visual	13,058	2.9%			
Total	451,000	100.0%	100.0%	100%	100%
Of All Vehicles Studied:	200,002		00.00/	070/	0.50/
Initial and Final Pass	399,963		96.9%	87%	85%
Disappearing Total	12,880 412,843		3.1% 100.0%	14%	15%
Total	412,043		100.0%		
Of All Initial Fails:					
Final Pass	26,009		66.9%	61%	38%
Disappearing	12,880*		33.1%*	39%	62%
Total	38,889		100.0%		

^{* 4%} are waived

IM240 Data Show Big Emission Reductions...

- Fleet emissions are reduced by 15% for CO (and 14% for HC)
- Final Pass vehicle emissions are dramatically reduced, by 60%, for CO and HC
- But Final Pass vehicles still emit slightly more than Initial Pass vehicles
- No Final Pass, or Disappearing, vehicles see small emission reductions due to one or two rounds of repairs

Average CO gpm by MY and I/M Result

1996-97 Arizona IM240

... but RSD Shows Much Smaller Reductions

- Comparison of average remote sensing emissions up to 90 days before the initial IM240 with remote sensing emissions up to 90 days after final IM240
- Fleet emissions only reduced by 7% for CO (half as much as measured by IM240); by 11% for HC
- Emissions from Final Pass vehicles reduced only 30% for CO, 40% for HC
- Remote sensing sees larger difference in emissions from Final Pass vehicles and Initial Pass vehicles
- Remote sensing sees bigger reduction in emissions from Disappearing vehicles

Average RSD CO by MY and I/M Result

Up to 90 days before and after I/M test, 1996-97 Arizona Remote Sensing

Discrepancy between IM240 and RSD Results Explained in Part by Vehicle Operation

- Is repair effectiveness sensitive to vehicle driving mode? The IM240 is not a vigorous driving cycle, whereas RSD units are sited at locations where vehicles are under moderate loads, to get a strong enough emissions signal
- Analyzed second-by-second data on 1,000 vehicles with full IM240 tests before and after repair
- Divided IM240 trace into modes of distinct vehicle operation, including the moderately loaded portion of the IM240
- Repairs reduce CO emissions over the entire IM240 by nearly 60%; however emissions over the moderate load portion are reduced by only 34% (similar to RSD results)
- Much of the difference in repair effectiveness as measured by IM240 and RSD may be attributable to different vehicle operating conditions under the two tests

Emission Reductions Due to IM240 Repairs

1080 Vehicles, 1996 Arizona IM240

Repair Effectiveness Depends on when Emissions Measured

- Remote sensing emissions increase as vehicle gets closer to initial I/M test
- Big initial emissions reduction due to passing I/M test
- Emissions increase as vehicle gets further from final I/M test

Average CO RSD Emissions by Time Period

1996-97 Arizona Remote Sensing

Repair Effectiveness, as Measured by RSD, Diminishes over Time

		ission		
1340.40	_	Reductions		
IM240	CO	HC		
Fleet	15%	14%		
Final Pass Vehicles	64%	61%		
Remote Sensing up to 1 month after I/M				
Fleet	12%	19%		
Final Pass Vehicles	36%	46%		
3-6 months after I/M				
Fleet	9%	14%		
Final Pass Vehicles	32%	35%		
12-15 months after I/M				
Fleet	6%	14%		
Final Pass Vehicles	28%	24%		

Long-Term Benefit of Repairs

- Analyzed 1997 results of vehicles tested in 1995 in Arizona. Cutpoints were not changed during this period
- 42% of vehicles that were repaired in 1995 fail again in 1997. The percent of "repeat offenders" ranges from 10% for MY94 to 50% for MY81
- Vehicles that initially passed in 1995 fail at the same rate in 1997 as the overall 1995 failure rate (7%)
- The same vehicles are failing subsequent I/M tests, either because of insufficient initial repair or a different component failing

Overall I/M Failure Rates by Test Year and MY

1995 and 1997 Arizona IM240

What Happens to Disappearing Vehicles?

- Ideally, Disappearing vehicles are scrapped or otherwise no longer operate in I/M area
- Calculated the distribution of remote sensing readings by I/M result and time period to see if the fraction of Disappearing vehicles in the RSD "fleet" decreases more rapidly than the fraction of Final Pass vehicles
- Remote sensing data show that 40% of Disappearing vehicles are no longer driven in I/M area 6 months after I/M test
- However, one-third of Disappearing vehicles continue to be driven in I/M area even 15 months after I/M test
- In contrast, about two-thirds of Final Pass vehicles continue to be driven in I/M area 15 months after I/M test

Fraction of Vehicles by I/M Result and Time Period

1996-97 Arizona Remote Sensing

MY Distribution of Vehicles Doesn't Change over Time

- Large numbers of both Final Pass and Disappearing vehicles are no longer being driven in the I/M area; are the oldest vehicles moving out of the I/M area?
- Used the remote sensing data to compare the distribution of vehicles by MY, both soon after I/M testing and over 15 months after I/M testing
- The MY distributions are quite similar, indicating that vehicles of all model years are relocating out of the I/M area

Distribution of Vehicles by MY and I/M Result

Less than 1 month after initial IM240, 1996-97 Arizona Remote Sensing

Distribution of Vehicles by MY and I/M Result

Over 15 months after initial IM240, 1996-97 Arizona Remote Sensing

Summary

- An independent source of data, either remote sensing or roadside emissions testing, is needed to evaluate effectiveness of I/M programs
- Initial CO emissions reductions from Arizona IM240 program are comparable to those predicted by MOBILE5; MOBILE5 slightly overpredicts initial reductions in HC, and dramatically overpredicts initial reductions in NOx
- Remote sensing data show initial repair effectiveness comparable to IM240 data, after accounting for different vehicle operation
- Remote sensing data show that about half of the fleet emission reductions measured by IM240 are lost one year after I/M testing; subsequent IM240 data confirm this result. Much of this loss in emission reduction comes from repeat failures by the same vehicles
- Disappearing vehicles that never pass the IM240 are still being driven in the I/M area; these vehicles are from all model years

Average HC gpm by MY and I/M Result

1996-97 Arizona IM240

Average RSD HC by MY and I/M Result

Up to 90 days before and after I/M test, 1996-97 Arizona Remote Sensing

